Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 359: 127469, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35700898

RESUMO

This study performs an integrated evaluation of the formation and distribution of algal-bacterial bioflocs in aquaculture wastewater supplemented with agricultural waste, together with an assessment of their behavior in the microbial community and of the water quality of the system in which a new bioaugmentation strategy was applied. Results indicated that the dual bioaugmentation strategy via the consortium addition of bacteria and microalgae had the highest formation performance, providing the most compact biofloc structure (0.59 g/L), excellent settleability (71.91%), and a large particle diameter (4.25 mm). The fed-batch supplementation of molasses and rice bran, in terms of changes in the values of COD, NH4+, NO3-, and PO43-, stimulated the formation of biofloc through algal-bacterial bioflocs and microbe-rice bran complexes within a well-established microbial community. These findings provide new insight into the influence of bioaugmentation on the formation of an innovative algal-bacterial biofloc.


Assuntos
Microalgas , Águas Residuárias , Aquicultura/métodos , Bactérias , Biomassa , Suplementos Nutricionais , Nutrientes , Simbiose , Águas Residuárias/microbiologia
2.
Antioxidants (Basel) ; 11(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35204069

RESUMO

Diatoms, as single cell eukaryotic microalgae, are rich sources of lipids, which have either beneficial or detrimental effects on the prevention and treatment of many diseases. Gas chromatography-mass spectrometry (GC-MS) identified diatom lipids with high levels of essential fatty acids (EFAs), especially polyunsaturated FAs (PUFAs) containing both omega-3 and omega-6. Nutritional values of FAs indicated possible applications in the pharmaceutical, nutraceutical, and functional food industries. Diatom FAs showed antioxidative potential on harmful radicals by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) scavenging, with high inhibition of the angiotensin-converting enzyme (ACE) that causes cardiovascular disease (CVD) and hypertension. A computational molecular docking simulation confirmed the inhibition mechanisms of FAs on ACE, with comparable levels of binding free energy to chemically synthesized ACE drugs. Findings suggested that diatom lipids showed potential for use as alternative ACE inhibitors or food supplement for CVD prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...